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Abstract
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1. Preliminaries
1.1. Kahler—Norden manifolds

Let M be a real connectedr2dimensional differentiable manifold endowed with an
almost complex structuré(J2 = —1, | being the identity transformation) and a pseudo-
Riemannian metrig of Norden type (that is, of signature:(m)) and such that

(VxJ)Y =0 )

for any X, Y € X(M), whereV is the Levi—Civita connection af and X(M) is the Lie
algebra of smooth vector fields d. Then the triple #, J, g) will be called a Kahler—
Norden manifold (a lhlerian manifold with Norden metriB], an anti-k&hlerian manifold

1.2. Holomorphic Riemannian manifolds

Let M be a complex manifold of complex dimension Denote by {/, J) the manifold
considered as a reab2dimensional manifold with the induced almost complex structure
J. The tangent space td4 J) at p € M and its complexification are denoted ByM
and Tl‘,CM , respectively. The subspaces]@f‘M consisting of complex vectors of type (1,

0) and (0, 1) are denoted U;él’o)M and T,(,O’l)M , respectively. The Lie algebras of real
smooth vector fields, complex vector fields, complex vector fields of type (1, 0) and complex
vector fields of type (0, 1) oM are denoted by (M), xC(M), xLO(nm) andx©D (),
respectively.

By a complex Riemannian metric dfis meant a symmetric (0, 2)-tensor figkgwhich
is non-degenerate at each pointvband

G(Z1,Z2) = G(Z1, Z2) forany Zi, Z € X5(M),
G(Z1,Z2) =0 forany Z1 e x30) and Zp e xOY(m). (3)

The second condition of (3) is equivalent to
G(JZ1,JZ2) = —G(Z1, Zo) forany Zi, Z» € XC(M).

Thus, a complex Riemannian metric is completely determined by its valug§-8i(M).

If Gis a complex Riemannian metric on a complex manifdidhen the pair ¥, G) is
said to be a complex Riemannian maniffq7,9,22]

For a local holomorphic coordinates systeity; (L < « < m) of a complex Riemannian
manifold, letz* = x* + «/—1y%, wherex® = Re%), y* = Im(z®%), and suppose

9 1/ 9 d d 1/ 9 9
—=-—-v-1—, —==|—=+v-1—).
aiz* 2 (Bx“ 8y°‘> v 2 <8x°‘ + ay"‘)
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In terms of such local coordinates, we set

a a — _
GAB=G<8Z—A,8Z—B>, A,B=l,...,m,1,...,m.

Then, for a complex Riemannian metfi; the defining conditions (3) are equivalent to

G(;E = Gaﬁ, Gojﬁ = GaE =0.

A complex Riemannian manifold{, G) is said to be a holomorphic Riemannian manifold
(see[6,7]; and alsd4,12,13,22] if the local component& g are holomorphic functions,
that is:

d

ﬁ Gaﬂ = O (4)

The condition (4) is equivalent 18/ = 0, whereV is the Levi—Civita connection d® [6].

2. Kahler—Norden versus holomorphic Riemannian

In [1,2], it was shown that there is one-to-one correspondence betwadricNorden
manifolds (M, J, g) and holomorphic Riemannian manifolde(G). The reader could also
confer[22]. We will describe this correspondence as follows, referrinid 12] for details.

Let (M, J, g) be aKahler—-Norden manifold, so that the conditions (1) and (2) are fulfilled.
Since the almost complex structudds parallel with respect to the connectién it is
integrable. Therefore, the real manifdidl inherits the structure of a complex manifold,
which for simplicity’s sake will also be denoted bj, and the almost complex structute
comes from the complex structure in the usual way.

In this paper, for any € X(M), by X we always denote the complex vector field of
type (1, 0) generated by, that is:

X

(X — v=1Ux) € xLO(Mm).

Any vector fieldZ € £1-9(M) is of this form, i.e.,Z = X for a certainX € ¥(M) (see e.g.
[11], vol. 1),

To define a complex Riemannian met@mn the complex manifol it is sufficient to
suppose

G(X,¥) = 3(e(X, V) — V=1g(X, JY)), X,Y € X(M) (5)

and next exten@ to have the conditions (3) satisfied (itis possible because of (1)). Moreover,

by (2) the metridG is holomorphic. Thus,M, G) is a holomorphic Riemannian manifold.
Conversely, a holomorphic Riemannian manifoM, (G) can be considered as a real

2m-dimensional Khler—Norden manifoldM, J, g). Namely, we defind to be the almost
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complex structure coming from the complex structurdodnd suppose
g(X,Y)=2ReG(X.Y)), X.,YeX(M). (6)

Then (3) and (4) imply (1) and (2), respectively.
One easily checks that the relations (5) and (6) state the one-to-one correspondence
between Kahler—Norden structured,(g) and holomorphic Riemannian metriGson M.

3. General formulas

Let (M, J, g) be a Kahler—Norden manifold and led, g) be the corresponding holo-
morphic Riemannian manifold (in the sense explaine8antion 2. Here and in the rest of
this paper, we writg instead ofG.

Let X" (M) denote the Lie algebra of holomorphic vector fieldsvbn

3.1. Agreement

Throughout the rest of this paper, without loss of generatity, . . . will denote arbitrary
real smooth vector fields avi such thatX, ¥, ... € X"(M).

The considered vector fields dhare always infinitesimal automorphisms of the almost
complex structurd (cf. e.g.[11], vol. Il). Therefore, we have

[JX, Y] =[X, JY] = J[X, Y], [JX, JY] = —[X, Y], (7)
[X, 71 =[X,7]. ®)

One notes that for a holomorphic functiband a vector fieldV, the following formula is
valid

fW = ((Re Y)W +(Im £)JW). (9)

Moreover, iff is a holomorphic function, then by the Cauchy—Riemann equations, we have
the following useful formulas

X(Ref)=(X)(Imf),  (JX)(Ref)=—-X(m f), (10)

X f = X(Ref) ++/—1X(Im f). (11)
By (e1, e2, ..., e2y,) we denote a frame of atangent spag#/, which is adapted to the struc-
ture (J, g) in the sense that it consists of real vectors, suchgtat eg) = —g(ew, eg) =
Sups 8lew, ep) = glew, eg) =0, Jey = ey, Jey = —ey, Where the Greek indices take on
values ..., manda’ = a + m. Then assuming, = (1/2)(ex — v/—1 Je,), we have also
aframe €1, ..., e,) of the spac@l(,l‘o)M for which g(éy, eg) = (1/2)8ap-

Let V and V be the Levi—Civita connections of theakiler—Norden metrig and the
holomorphic Riemannian metrig fespectively. The connectiohis holomorphic, that is,
ViY e X(M)foranyX, ¥ e X"(M) (cf. [12,13,4). By the symmetry oF, one notes the
following important consequence of (7):

VxY = JVyY. (12)
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To establish the basic relation between the Levi—Civita connec¥oansdV, we apply the
standard formulas (cf. e.fL1], vol. I)
2g(VxY, Z) = Xg(Y. Z) + Yg(X, Z) — Zg(X. Y) — ¢([X, Z]. Y)
—&([Y. Z], X) + g([X, Y], 2), (13)
28(Vy¥, 2) = X3(Y, 2) + Y3(X, 2) — Z3(X, V) — 3(X. 21, V) — &(¥, 2]. %)
+3(X. 71, 2). (14)
Using (11), (5), (8) and (10) we find
X3(V. 2) = 3(Xg(¥. 2) — V=1Xg(¥. JZ)),
80X, Y1, 2) = 3(s([X. Y1, 2)—V=14((X. Y1, JZ)),  Zg(X,JY) = (JZ)g(X, Y).

Using the above formulas, (7) and (13), the right hand side of (14) can be transformed into
8(VxY, Z) — V—=1g(VxY, JZ)

and next by (5) into g(V/X\Y, Z). This compared to the left hand side of (14), gives the
desired formula
Vi¥ = VyY. (15)
Let Rand R be the Riemann curvature tensorsvoandV, respectively:
R(X,Y) =[Vx, Vy] = Vix.1]. R(X.7)=[V4. V3] - %[S(,f/]'
By applying (7), (12) and/J = 0, we can show tha& is totally pure, i.e.:

R(X,Y)J = R(JX,Y) = R(X, JY) = JR(X, Y). (16)

Using the defining formulas and (15) and (8), we check by straightforward computations
that the Riemann curvature tens®&andR are related by

RX, 1)Z = (R(X,Y)Z). (17)
Let SandS$ be the Ricci curvature tensor fields:

S(X,Y) =Tr{Z — R(Z, X)Y}, S(X,Y)=Tr{Z — R(Z, X)Y}
and letQ and O be the corresponding Ricci operators:

g(0X,Y)=S(X,Y),  &0X,¥)=S(X, 7).

For the Ricci curvature tens&and the Ricci operatd, we have

S(JX,Y) = S(X,JY),  S(JX,JY)=-S(X.Y), QJ=JO. (18)
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In fact, using (16), we find
S(JX,Y)=Tr{Z— R(Z, JX)Y} =Tr{Z — R(Z, X)JY} = S(X, JY).

Hence, it easily follows thas§(JX, JY) = —S(X, Y). Moreover, the first equality of (18)
leads tog(QJX, Y) = g(0X, JY) = g(JOX, Y), which givesQJ = JQ.
Note that forS S, QandQ, it holds

S(X, ¥) = 3(S(X, ¥) — V/=1S(X, JY)), 0X = OX. (19)

Indeed, using the adapted franzg) @nd formula (16), we can write

S(X.Y) = (3(R(ea- X)Y. €a) — g(R(ewr, X)Y. €0r)) = 2 (2(R(ew: X)Y, es),

where the sum concerns the repeated indices. Next, using the #gnaa{ formulas (17),
(5) and (16), we find

S(X.¥) =2 3(R(@u X)V,2) =2 3((R(ea: X)Y) &a)
=Y (8(R(ea, X)Y, ea) — V=1g(R(ea, X)Y, Jes))
= > (8(R(ea- X)Y. ea) — V=1 g(R(ew. X)JY. ).

The above together with the previous equality implies the first part of (19). This together
with (5) gives for the Ricci operatof@ and Q

80X, ¥) = S(X,¥) = (S(X, ¥) — V=15(X, JY))
= 3(g(0X, Y) — V=1g(0X, JY)) = §(0X, V),

completing the proof of (19).
Define the real scalar curvatunes* of g, and the holomorphic scalar curvaturefg

by
r=TrQ, rF=Tr(JQ), F=TrQ.
Using (18) and (1), we find the following expressionsifandr*:
r=TrQ =" (8(Qeu ex) — g(Qew, ex)) =2 (2(Qeq, €a)),
P =Tr(JQ) = Y (s(JQeq, €a) — 8(JQew ew)) = 2 ) _(8(Qea, Jea).-

Moreover, using (19) and (5), we obtain for ~
P=TrO=2% 2(0%:2) =2 3(Qe, )
=Y (8(Qea, ea) — V=1g(Qeu, Jeu)).
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From the above equalities, one can easily derive the following important formuta for
P =20 —/=1r%). (20)

For further use, we need also the following additional operators.
For X,Y € X(M) and a symmetric (0, 2)-tensor fiekdon M, defineX A, Y to be the
operator acting on vector fields by

(X AaY)Z =AY, 2)X — A(X, 2)Y, Z e X(M).
Let A satisfy additionally the condition
A(JX, JY) = —A(X, Y)

(note that the relation of this type is fulfilled by the metric tengand the Ricci tensdg
cf. (1) and (18)).

Define A to be the complex (0, 2)-tensor field which is completely determined by its
values onx(-9(a1) and for which

AKX, 7) = JAX, Y) — V=T A(X, JY)).
ForX, Y e x:9(Mm), define the operataX A ¥ acting on¥-9 () by
XAy 1Z =A@, 2)X — A(X, 2)Y.
It is now a straightforward verification that
X A3 1Z = (X AaY)Z — (JX Ap JY)Z). (21)

If additionally A is a holomorphic tensor field, thei (A ; ¥)Z € X" (M)foranyX, ¥, Z e
xh(p).

4. Recurrence of the Riemann curvature

A (pseudo-)Riemannian manifold is said to be (1) locally symmeti¢kf= 0; (2) of
recurrent curvaturfl1,21]if its Riemann curvature tens@is not identically zero and for
a certain 1-formys, VR = ¥ ® R. It was shown by the author {i8] that the recurrence
of the Riemann curvature of aékler—Norden manifold is not essential in the sense such a
manifold is necessarily locally symmetric. On the other hand, the following notion of the
holomorphic recurrence is crucial.

A Kahler—Norden manifold will be said to be of holomorphically recurrent (in short,
H-recurrent) curvature if its holomorphic Riemann curvature terss not identically
zero and for a certain holomorphic 1-foin

VR=y®R. (22)
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Before we express the holomorphic recurrence with the help of the real Riemann curvature
tensoR, we extend to act on real 1-formg assuming{y)(X) = ¢(JX) foranyX € X(M).

Remark 1. Jis compatible with the musical isomorphisms. Preciselyj teT*M — TM
andb : TM — T*M be theisomorphisms between tangent and cotangent bufidlegs* M
defined byg(w®, X) = w(X) andX’(Y) = g(X, Y) foranyw € T*M andX, Y € TM. With
the help of (1), one easily checks tlds compatible with andb, that is, (w)* = Jo® and
(JX)> = JXx".

Theorem 2. A Kéahler—Norden manifold is of H-recurrent curvature if and only if the
curvature tensor R is not identically zero and

(VuR)(X,Y) = o(U)R(X, Y) — p(JU)JR(X, Y) (23)
for a certain real 1-formp such thaip = ¢ — /—1Jy is a holomorphic 1-form
Proof. Atfirst, we observe that for the covariant derivati%® andV R of a Kahler—Norden
manifold:

(Vg R(X, 1)Z = (VuR)(X, Y)2). (24)

To prove it, we write down the standard formula
(Vi R)(X, V)Z = Vi (R(X, ¥)Z) — R(Vy X, Y)Z — R(X, V3 Y)Z — R(X, V)V, Z.

An application of the formulas (15) and (17) enables us to rewrite the right hand side of
the above in the form Yy R)(X, Y)Z). Now we can start the current proof. Writing a
holomorphic 1-formp as¢ = ¢ — /—1Jp, with ¢ being a certain real 1-form, we see that

P(0) = p(U) = V=1¢(JU). (25)
The formulas (17), (25) and (9) witf = $(U), W = R(X, Y)Z enable us to find the
following

POIREX, 1)Z = §(O)R(X, V)Z) = (@(U)R(X, Y)Z — ¢(JU)IR(X, Y)Z).
Now using the above expression and (24), we claim that the defining condition (22) is
equivalent to (23). O

Examples of Kahler—Norden manifolds of H-recurrent curvature will be given in the last
section. They are not locally symmetric in general.

5. Ricci-recurrence

A (pseudo-)Riemannian manifold is said to be of recurrent Ricci curvglfeif its
Ricci curvature tensdbis not identically zero and for a certain 1-fonn

VS=¢®S. (26)
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Proposition 3. Any Kahler—Norden manifold of recurrent Ricci curvature is necessarily
of parallel Ricci curvature

Proof. In the proof, we need the following formula &S, which is valid for any Khler—
Norden manifold:

(Vi S)X. Y) = (VuS)(X, JY). (27)

Infact, using (12), we find\(;y Q)X = J(Vy Q)X, from which the expression (27) follows.

Let the manifold be of recurrent Ricci curvature. Recall that under our assumption,
the Ricci tensolS does not vanish at any point d. Suppose that the set of points at
which the recurrence fornr #£ 0 is not empty and restrict our consideration to this set. By
applying (26) into (27), we hawe(JU)S(X, Y) — ¥(U)S(X, JY) = 0.HenceS(X, Y)Jy —

S(X, JY)y = 0. Sincey andJy are linearly independent, we fisgX, Y) = OforanyX, Y,
which is a contradiction. Thereforge = 0 at every point oM, that is, the Ricci tensdis
parallel. O

Because of the reduction appeareBiposition 3we propose to study the holomorphic
Ricci-recurrence.

A Kahler—Norden manifold will be called of H-recurrent Ricci curvature if its holomor-
phic Ricci curvature tensd is not identically zero and for a certain holomorphic 1-form

o
VS=9®S. (28)
Theorem 4. A Kéhler—Norden manifold is of H-recurrent Ricci curvature if and only if its
Ricci curvature tensor S is not identically zero and
(VuS)(X. Y) = ¢(U)S(X, Y) — ¢(JU)S(X, JY) (29)

for a certain real 1-formp such tha) = ¢ — «/—1Jgp is a holomorphic 1-form

Proof. For any Kahler—Norden manifold, we have

(V&)X 1) = 3((VuS)(X, V) = V=L(VuS)(X, JY)). (30)
To find (30), with the help of (15) and (19), we compute

(9500 = 95 0% — VUK = ¥, 0% — OV X

= (Vu0X) - (2VuX) = (Vu 0)X),

which gives ¥; Q)X = ((Vy Q) X). Next we show that the last formula and (5) imply

(Vg S)(X. 1) = 2(V5 Q)X 1) = 2(Vu ) X)7. 7)

= 3&(Vu Q)X Y) - V=15((Vu Q)X. JY)),

which leads to (30).
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Returning to the Ricci H-recurrence, we note that the defining condition (28) can be
equivalently written as

V8K, 1) = a(D)8(X, 7). (31)
Now, writing = ¢ — +/—1J¢ and using (25) and (19), we find
AO)S(X. ¥) = 3(p(U)S(X. Y) — p(JU)S(X., JY)
—V/=1(p(U)S(X. JY) + (JU)S(X, Y))).

Finally, using the above and (30), we assert that (31) holds if and only if (29) is
fulfilled. O

Examples of Khler—Norden manifolds of H-recurrent Ricci curvature will be given in
Section 8

6. Holomorphically projective curvature

The holomorphically projective (in short, H-projective) curvature (real) teRsof a
Kahler—-Norden manifold of real dimensian= 2m > 2 is defined byj23,10,18]

P(X,Y) = R(X,Y) — n—iz(x As Y — JX Ag JY). (32)

The tensoP is an invariant of the holomorphically projective transformations. On the other
hand, by analogy to the classical theory of the (real) projective curvature (sef@]g.g.
consider the standard projective curvature tersof the connectiorV given by

P(T) = R T)— T K s T (33)

By definition, P is a holomorphic tensor filed. Making straightforward computations, in
which formulas (33), (17), (21) witih = S, and (32) should be used, one can check that
the tensors? andP are strictly related. Namely:

PX,V)Z = (P(X,Y)Z) (34)

holds.
A Kéahler—-Norden manifold is called H-projectively flat if its Levi—Civita connection can
be locally holomorphically projectively transformed to a flat connection.

Theorem 5. Let(M, J, g) be a Kéhler—Norden manifold

(i) Whendimgp M > 6,the manifold is H-projectively flat if and only # = 0, or equiva-
lently 7 = 0.

(i) Whendimg M = 4, the tensor Ror equivalentlyP) vanishes identically. In this case
the manifold is H-projectively flat if and only if its scalar curvature r is constant
equivalentlyr is constant
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Proof.

(i) This assertion is in fact a consequence of more general results concerning complex
manifolds endowed with affine connections (@0,23,10) and formulas (33), (34).

(ii) Since the Riemann curvature tensor of afer—Norden manifold is totally pure (see
(16)), from Corollary 4.2 of lvanoy10] it follows that P vanishes identically, and the
manifold is H-projectively flat if and only if the Ricci tens&is Codazzi, that is:

(VxS)(Y, Z) — (VyS)(X, Z) = 0. (35)
In view of (30), the condition (35) is equivalent to

(ViS)(¥, 2) - (V3 $)(X, 2) = 0. (36)
Onthe other hand, since dimV = 2, for the Ricci tensa$, we haves = (7/2)g. Therefore,
(36) holds if and only if

dA(X)a(Y, Z) — di(Y)g(X, Z) = 0,
equivalently @"= 0, that is,”"is a complex constant. Finally, sinegeis a holomorphic
function and Re{f’ = r/2, 7 is constant if and only if is constant. [

A Kahler—Norden manifold is called to be of recurrent H-projective curvature if its tensor

P is not identically zero and for a certain 1-forn

VP=y®P.

Itwas shown by the author [@8] that this notion is not essential in the sense that aatyl&—
Norden manifold of recurrent H-projective curvature is necessarily locally symmetric. So,
we examine the following.

A Kahler—Norden manifold will be called to be of H-recurrent H-projective curvature if
its tensorP is not identically zero and

VP=¢0xP (37)
for a certain holomorphic 1-forr
The next theorem shows that the class @hlker—Norden manifolds of H-recurrent H-

projective curvature reduces to the class of H-recurrent curvature. Precisely, we have the
following theorem.

Theorem 6. Let(M, J, g) be a Kdhler—Norden manifold witdimg M > 6.

() If (M, J, g) is of H-recurrent curvaturgthen it is H-projectively flat or of H-recurrent
H-projective curvature

(i) If (M, J,g) is of H-recurrent H-projective curvaturethen it is of H-recurrent
curvature
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Proof.

(i) Let us assume that the manifold is of H-recurrent curvature, so that (22) holds and
R # 0. We note easily that (22) always implies (28). Next differentiating (33) covariantly
and applying both of the relations, we find (37). Now, we have two possibilities:

(i1) P is identically zero, i.e. the H-projective flatness (however, in this case the manifold
is locally symmetric, which is not excluded in general;[¢8]);

(i2) P # 0 at every point and then the manifold is of H-recurrent H-projective curvature.
(i) This part of our theorem can be proved by formal repeating certain ideas from the papers
[14,8], which concern Riemannian manifolds with recurrent projective curvature. Exactly,
assuming the condition (37) arfel 0, similarly like in Theorem 3.6 of14], it can be
shown that the recurrence foi@ris closed. Next, like i8], one shows that (22) must hold.

R #0sinceP £0. O

7. Four-dimensional Kahler—-Norden manifolds

Theorem 7. A Kahler—Norden manifold of real dimension 4 is of H-recurrent curvature
on the setwhere the holomorphic scalar curvatufds not zero with the recurrence form
@ given byp = d#/7, or equivalentlyp = ¢ — v/—1Jp with ¢ = (1/2)d In(¢-2 + r*2).

Proof. Since dim: M = 2, we may expresg in the form

RX, V)= 3rX ng V.

NI

This then leads to the following expression
(VyR)(X, V) = 3dr(0)X Az V.

The last two equalities give (22) with= d7/r at points where % 0. Using formula (20),
we find

Re@) = d In(2 + r*2).
Therefore, we can writg = ¢ — v/—1Jp, wherep = (1/2)d In¢2 + r*?). O
Theorem 8. A K&hler—Norden manifold of real dimension 4 is (locally) conformally flat
if and only if its holomorphic scalar curvature is constant pure imagingry= 0 and

r* = constant).

Proof. Since dimr M = 2, like in the previous proof, we have

RX,V)Z=3r(X ny ¥)Z. (38)
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To transform the right hand side of (38), we will use (9) and the formula
J(X AgY —JX Ng JY) = JX Ng Y + X A JY, (39)

which can be obtained by a straightforward computation. Namely, using (21 )Awthg,
we find

FX A V)Z =37 (X A Y)Z — (JX g JY)Z),

NI

which in virtue of (9) withf =7, W = (X Ay Y)Z — (JX Ag JY)Z, and the formulas (20),
(39), can be transformed into

SFX A V)Z=3((r(X Ag Y — IX A JY) =" (JX Ng Y + X A JY))Z).  (40)
Now, regarding (38), (17) and (40), we obtain for the curvature tensor

R(X,Y) = $r(X Ag Y — JX Ag JY) — Rr*(JX Ag Y + X Ag JY). (41)
Consequently, for the Ricci operator:

Q = (N1 — (7). (42)

Recall that the manifold is conformally flat if and only Gf = O, whereC is the Weyl
conformal curvature tensor:

C(X.Y)=R(X.Y) = 2(OX A Y + X Ag QY — (31)X Ag ).
In virtue of (41) and (42), the conformal curvature tensor takes the shape
C(X,Y) = Hr(X Ag ¥ — 3JX Ag JY).

ThereforeC = 0 if and only ifr = 0, as required. (]

8. Examples

Letm € N,m > 3, and the Greek indices run through the{®e8, ..., m — 1}. Letg be
the holomorphic Riemannian metric which is defined on an open subskthe complex
spaceC™ by

2= fdt @det + ) kep di” @ def + det @ de” + de” @ dz?, (43)

where the sum concerns the repeated inditésa holomorphic function o) andk.g
are complex constants such that the{ 2)-by-¢n — 2) matrix [kg] is symmetric and
non-degenerate. The metric (43) is the holomorphic version of the so-called Walker’s type
metric occurred ifj21], Section 9; see also the monogrdff].

In the sequel, we specify the functiério obtain various classes of holomorphic Rie-
mannian metrics.
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(i) Letus suppose

£ .. 2" = ph) Z aa,gz"‘zﬂ + Z byz%, (44)

wherea,g are complex constants such that the{ 2)-by-(n — 2) matrix ag] is non-
zero and symmetridy, are arbitrary complex constants ama a function depending
on one complex variable only, which is non-zero and holomorphic on an open sijbset
of the complex lin€C. Then on the open subdét= Uy x C"~1 ¢ C™, the metric (43)
with f given by (44) is of H-recurrent curvature wigh= (p’/p)dz! as its recurrence
form (motivated by Walkej21], Section 9).

(i) Suppose that

fih . M = ZZZZaazo‘, (45)

wherea, are complex constants such that

Y lag*>0 and > k%ayap =0,

[k*’] being the inverse matrixfs] ~1. Then the metric (43) witfigiven by (45) is of
H-recurrent Ricci curvature with = (3", a,z%) dz* asits recurrence form (motivated
by Olszak[15], Example 1).

Acknowledgement

The author wishes to thank Dr. Andrzej Borowiec for useful discussions concerning
Kahler—Norden manifolds.

References

[1] A. Borowiec, M. Ferraris, M. Francaviglia, |. Volovich, Almost-complex and almost-product Einstein man-
ifolds from a variational principle, J. Math. Phys. 40 (7) (1999) 3446-3464.

[2] A. Borowiec, M. Francaviglia, |. Volovich, Anti-thlerian manifolds, Diff. Geom. Appl. 12 (2000) 281—
289.

[3] L.P. Eisenhart, Non-Riemannian Geometry, vol. VIII, Am. Math. Soc. Collog. Publ, New York, 1927.

[4] E.J. Flaherty Jr., The nonlinear gravitation in interaction with a photon, Gen. Relat. Gravit. 9 (11) (1978)
961-978.

[5] G.T. Ganchey, A.V. Borisov, Note on the almost complex manifolds with Norden metric, Compt. Rend. Acad.
Bulg. Sci. 39 (1986) 31-34.

[6] G. Ganchey, S. lvanov, Connections and Curvatures on Complex Riemannian Manifolds, Internal Report
1C/91/41, International Centre for Theoretical Physics, Trieste, Italy, 1991.

[7] G.T. Ganchey, S. Ivanov, Characteristic curvatures on complex Riemannian manifolds, Riv. Math. Univ.
Parma 51 (1992) 155-162.

[8] E. Glodek, A note on Riemannian spaces with recurrent projective curvature, Sci. Papers Inst. Math. Theor.
Phys. No. 1, Studies and Researches No. 1, Riemannian Geometry, Wroctaw, 1970, pp. 9-12.

[9] S. Ilvanov, Holomorphically projective transformations on complex Riemannian manifold, J. Geom. 49 (1994)
106-116.



K. Stuka / Journal of Geometry and Physics 54 (2005) 131-145 145

[10] S. Ivanov, On the fundamental theorem for non-degenerate complex affine hypersurface immersion, Mh.
Math. 123 (1997) 321-336.

[11] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vols. | and I, Interscience, New York,
1963, 1969.

[12] C.R. LeBrun,}-space with a cosmological constant, Proc. R. Soc. Lond. Ser. A 380 (1982) 171-185.

[13] C. LeBrun, Spaces of complex null geodesics in complex-Riemannian geometry, Trans. Am. Math. Soc. 278
(1983) 209-231.

[14] M. Matsumoto, On Riemannian spaces with recurrent projective curvature, Tensor N. S. 19 (1968) 11-18.

[15] Z. Olszak, On Ricci-recurrent manifolds, Collog. Math. 52 (1987) 205-211.

[16] E.M. Patterson, Some theorems on Ricci-recurrent spaces, J. Lond. Math. Soc. 27 (1952) 287-295.

[17] H.S. Ruse, A.G. Walker, T.J. Willmore, Harmonic Spaces, Edizioni Cremonese, Roma, 1961.

[18] K. Stuka, On Kahler manifolds with Norden metrics, Antiiét. Univ. Al.l. Cuza lag Ser. la Mat. 47 (2001)
105-122.

[19] K. Stuka, Properties of the Weyl conformal curvature @fter-Norden manifolds, in: Proc. Colloqg. Diff.
Geom. on Steps in Differential Geometry, July 25-30, 2000, Debrecen, 2001, pp. 317-328.

[20] Y. Tashiro, On a holomorphically projective correspondence in an almost complex space, Math. J. Okayama
Univ. 6 (1957) 147-152.

[21] A.G. Walker, On Ruse’s spaces of recurrent curvature, Proc. Lond. Math. Soc. 52 (1950) 36-64.

[22] N. Woodhouse, The real geometry of complex space-times, Int. J. Theor. Phys. 16 (1977) 663—670.

[23] K. Yano, Differential Geometry of Complex and Almost Complex Spaces, Pergamon Press, New York, 1965.



	On the curvature of K{setbox @tempboxa hbox {a}accent 127 a}hler--Norden manifolds
	1Preliminaries
	K{setbox @tempboxa hbox {a}accent 127 a}hler--Norden manifolds
	Holomorphic Riemannian manifolds

	K{setbox @tempboxa hbox {a}accent 127 a}hler--Norden versus holomorphic Riemannian
	3General formulas
	Agreement

	Recurrence of the Riemann curvature
	Ricci-recurrence
	Holomorphically projective curvature
	Four-dimensional K{setbox @tempboxa hbox {a}accent 127 a}hler--Norden manifolds
	Examples
	Acknowledgement
	References


