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Abstract

Using the one-to-one correspondence between Kähler–Norden and holomorphic Riemannian met-
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1. Preliminaries

1.1. Kähler–Norden manifolds

Let M be a real connected 2m-dimensional differentiable manifold endowed with an
almost complex structureJ (J2 = −I, I being the identity transformation) and a pseudo-
Riemannian metricg of Norden type (that is, of signature (m, m)) and such that

g(JX, JY ) = −g(X, Y ), (1)

(∇XJ)Y = 0 (2)

for any X, Y ∈ X(M), where∇ is the Levi–Civita connection ofg andX(M) is the Lie
algebra of smooth vector fields onM. Then the triple (M, J, g) will be called a K̈ahler–
Norden manifold (a K̈ahlerian manifold with Norden metric[5], an anti-K̈ahlerian manifold
[1,2]).

1.2. Holomorphic Riemannian manifolds

LetM be a complex manifold of complex dimensionm. Denote by (M, J) the manifold
considered as a real 2m-dimensional manifold with the induced almost complex structure
J. The tangent space to (M, J) at p ∈ M and its complexification are denoted byTpM

andTCp M, respectively. The subspaces ofTCp M consisting of complex vectors of type (1,

0) and (0, 1) are denoted byT (1,0)
p M andT

(0,1)
p M, respectively. The Lie algebras of real

smooth vector fields, complex vector fields, complex vector fields of type (1, 0) and complex
vector fields of type (0, 1) onM are denoted byX(M), XC(M), X(1,0)(M) andX(0,1)(M),
respectively.

By a complex Riemannian metric onM is meant a symmetric (0, 2)-tensor fieldG, which
is non-degenerate at each point ofM and

G(Z̄1, Z̄2 ) = G(Z1, Z2) for any Z1, Z2 ∈ XC(M),

G(Z1, Z2) = 0 for any Z1 ∈ X(1,0)(M) and Z2 ∈ X(0,1)(M). (3)

The second condition of (3) is equivalent to

G(JZ1, JZ2) = −G(Z1, Z2) for any Z1, Z2 ∈ XC(M).

Thus, a complex Riemannian metric is completely determined by its values onX(1,0)(M).
If G is a complex Riemannian metric on a complex manifoldM, then the pair (M, G) is

said to be a complex Riemannian manifold[6,7,9,22].
For a local holomorphic coordinates system (zα; 1 ≤ α ≤ m) of a complex Riemannian

manifold, letzα = xα + √−1yα, wherexα = Re(zα), yα = Im(zα), and suppose

∂

∂zα
= 1

2

(
∂

∂xα
− √−1

∂

∂yα

)
,

∂

∂zᾱ
= 1

2

(
∂

∂xα
+ √−1

∂

∂yα

)
.
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In terms of such local coordinates, we set

GAB = G

(
∂

∂zA
,

∂

∂zB

)
, A, B = 1, . . . , m, 1̄, . . . , m̄.

Then, for a complex Riemannian metricG, the defining conditions (3) are equivalent to

Gᾱβ̄ = Gαβ, Gᾱβ = Gαβ̄ = 0.

A complex Riemannian manifold (M, G) is said to be a holomorphic Riemannian manifold
(see[6,7]; and also[4,12,13,22]) if the local componentsGαβ are holomorphic functions,
that is:

∂

∂zγ̄
Gαβ = 0. (4)

The condition (4) is equivalent tô∇J = 0, where∇̂ is the Levi–Civita connection ofG [6].

2. Kähler–Norden versus holomorphic Riemannian

In [1,2], it was shown that there is one-to-one correspondence between Kähler–Norden
manifolds (M, J, g) and holomorphic Riemannian manifolds (M, G). The reader could also
confer[22]. We will describe this correspondence as follows, referring to[1,2] for details.

Let (M, J, g) be a K̈ahler–Norden manifold, so that the conditions (1) and (2) are fulfilled.
Since the almost complex structureJ is parallel with respect to the connection∇, it is
integrable. Therefore, the real manifoldM inherits the structure of a complex manifold,
which for simplicity’s sake will also be denoted byM, and the almost complex structureJ
comes from the complex structure in the usual way.

In this paper, for anyX ∈ X(M), by X̂ we always denote the complex vector field of
type (1, 0) generated byX, that is:

X̂ = 1
2(X − √−1JX) ∈ X(1,0)(M).

Any vector fieldZ ∈ X(1,0)(M) is of this form, i.e.,Z = X̂ for a certainX ∈ X(M) (see e.g.
[11], vol. II).

To define a complex Riemannian metricG on the complex manifoldM it is sufficient to
suppose

G(X̂, Ŷ ) = 1
2(g(X, Y ) − √−1g(X, JY )), X, Y ∈ X(M) (5)

and next extendG to have the conditions (3) satisfied (it is possible because of (1)). Moreover,
by (2) the metricG is holomorphic. Thus, (M, G) is a holomorphic Riemannian manifold.

Conversely, a holomorphic Riemannian manifold (M, G) can be considered as a real
2m-dimensional K̈ahler–Norden manifold (M, J, g). Namely, we defineJ to be the almost
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complex structure coming from the complex structure ofM and suppose

g(X, Y ) = 2 Re(G(X̂, Ŷ )), X, Y ∈ X(M). (6)

Then (3) and (4) imply (1) and (2), respectively.
One easily checks that the relations (5) and (6) state the one-to-one correspondence

between K̈ahler–Norden structures (J, g) and holomorphic Riemannian metricsG onM.

3. General formulas

Let (M, J, g) be a K̈ahler–Norden manifold and let (M, ĝ) be the corresponding holo-
morphic Riemannian manifold (in the sense explained inSection 2). Here and in the rest of
this paper, we write ˆg instead ofG.

LetXh(M) denote the Lie algebra of holomorphic vector fields onM.

3.1. Agreement

Throughout the rest of this paper, without loss of generality,X, Y, . . . will denote arbitrary
real smooth vector fields onM such thatX̂, Ŷ , . . . ∈ Xh(M).

The considered vector fields onM are always infinitesimal automorphisms of the almost
complex structureJ (cf. e.g.[11], vol. II). Therefore, we have

[JX, Y ] = [X, JY ] = J [X, Y ], [JX, JY ] = −[X, Y ], (7)

[X̂, Ŷ ] = [̂X, Y ]. (8)

One notes that for a holomorphic functionf and a vector fieldŴ , the following formula is
valid

fŴ = ((Ref )W + (Im f )JW )̂ . (9)

Moreover, iff is a holomorphic function, then by the Cauchy–Riemann equations, we have
the following useful formulas

X(Ref ) = (JX)(Im f ), (JX)(Ref ) = −X(Im f ), (10)

X̂ f = X(Ref ) + √−1X(Im f ). (11)

By (e1, e2, . . . , e2m) we denote a frame of a tangent spaceTpM, which is adapted to the struc-
ture (J, g) in the sense that it consists of real vectors, such thatg(eα, eβ) = −g(eα′ , eβ′ ) =
δαβ, g(eα, eβ′ ) = g(eα′ , eβ) = 0, Jeα = eα′ , Jeα′ = −eα, where the Greek indices take on
values 1, . . . , m andα′ = α + m. Then assuming ˆeα = (1/2)(eα − √−1Jeα), we have also
a frame (ˆe1, . . . , êm) of the spaceT (1,0)

p M for which ĝ(êα, êβ) = (1/2)δαβ.
Let ∇ and ∇̂ be the Levi–Civita connections of the Kähler–Norden metricg and the

holomorphic Riemannian metric ˆg, respectively. The connection̂∇ is holomorphic, that is,
∇̂X̂Ŷ ∈ Xh(M) for anyX̂, Ŷ ∈ Xh(M) (cf. [12,13,4]). By the symmetry of∇, one notes the
following important consequence of (7):

∇JXY = J∇XY. (12)
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To establish the basic relation between the Levi–Civita connections∇ and∇̂, we apply the
standard formulas (cf. e.g.[11], vol. I)

2g(∇XY, Z) = Xg(Y, Z) + Yg(X, Z) − Zg(X, Y ) − g([X, Z], Y )

− g([Y, Z], X) + g([X, Y ], Z), (13)

2ĝ(∇̂X̂Ŷ , Ẑ) = X̂ĝ(Ŷ , Ẑ) + Ŷ ĝ(X̂, Ẑ) − Ẑĝ(X̂, Ŷ ) − ĝ([X̂, Ẑ], Ŷ ) − ĝ([Ŷ , Ẑ], X̂)

+ ĝ([X̂, Ŷ ], Ẑ). (14)

Using (11), (5), (8) and (10) we find

X̂ĝ(Ŷ , Ẑ) = 1
2(Xg(Y, Z) − √−1Xg(Y, JZ)),

ĝ([X̂, Ŷ ], Ẑ) = 1
2(g([X, Y ], Z)−√−1g([X, Y ], JZ)), Zg(X, JY ) = (JZ)g(X, Y ).

Using the above formulas, (7) and (13), the right hand side of (14) can be transformed into

g(∇XY, Z) − √−1g(∇XY, JZ)

and next by (5) into 2ˆg(∇̂XY, Ẑ). This compared to the left hand side of (14), gives the
desired formula

∇̂X̂Ŷ = ∇̂XY. (15)

LetRandR̂ be the Riemann curvature tensors of∇ and∇̂, respectively:

R(X, Y ) = [∇X, ∇Y ] − ∇[X,Y ], R̂(X̂, Ŷ ) = [∇̂X̂, ∇̂Ŷ ] − ∇̂[X̂,Ŷ ] .

By applying (7), (12) and∇J = 0, we can show thatR is totally pure, i.e.:

R(X, Y )J = R(JX, Y ) = R(X, JY ) = JR(X, Y ). (16)

Using the defining formulas and (15) and (8), we check by straightforward computations
that the Riemann curvature tensorsRandR̂ are related by

R̂(X̂, Ŷ )Ẑ = (R(X, Y )Z)̂. (17)

LetSandŜ be the Ricci curvature tensor fields:

S(X, Y ) = Tr{Z �→ R(Z, X)Y}, Ŝ(X̂, Ŷ ) = Tr{Ẑ �→ R̂(Ẑ, X̂)Ŷ}

and letQ andQ̂ be the corresponding Ricci operators:

g(QX, Y ) = S(X, Y ), ĝ(Q̂X̂, Ŷ ) = Ŝ(X̂, Ŷ ).

For the Ricci curvature tensorSand the Ricci operatorQ, we have

S(JX, Y ) = S(X, JY ), S(JX, JY ) = −S(X, Y ), QJ = JQ. (18)
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In fact, using (16), we find

S(JX, Y ) = Tr{Z �→ R(Z, JX)Y} = Tr{Z �→ R(Z, X)JY} = S(X, JY ).

Hence, it easily follows thatS(JX, JY ) = −S(X, Y ). Moreover, the first equality of (18)
leads tog(QJX, Y ) = g(QX, JY ) = g(JQX, Y ), which givesQJ = JQ.

Note that forS, Ŝ, Q andQ̂, it holds

Ŝ(X̂, Ŷ ) = 1
2(S(X, Y ) − √−1S(X, JY )), Q̂X̂ = Q̂X. (19)

Indeed, using the adapted frame (ei) and formula (16), we can write

S(X, Y ) =
∑

(g(R(eα, X)Y, eα) − g(R(eα′ , X)Y, eα′ )) = 2
∑

(g(R(eα, X)Y, eα),

where the sum concerns the repeated indices. Next, using the frame (ˆeα) and formulas (17),
(5) and (16), we find

Ŝ(X̂, Ŷ ) = 2
∑

ĝ(R̂(êα, X̂)Ŷ , êα) = 2
∑

ĝ((R(eα, X)Y )̂ , êα)

=
∑

(g(R(eα, X)Y, eα) − √−1g(R(eα, X)Y, Jeα))

=
∑

(g(R(eα, X)Y, eα) − √−1g(R(eα, X)JY, eα)).

The above together with the previous equality implies the first part of (19). This together
with (5) gives for the Ricci operatorsQ andQ̂

ĝ(Q̂X̂, Ŷ ) = Ŝ(X̂, Ŷ ) = 1
2(S(X, Y ) − √−1S(X, JY ))

= 1
2(g(QX, Y ) − √−1g(QX, JY )) = ĝ(Q̂X, Ŷ ),

completing the proof of (19).
Define the real scalar curvaturesr, r∗ of g, and the holomorphic scalar curvature ˆr of ĝ

by

r = Tr Q, r∗ = Tr(JQ), r̂ = Tr Q̂.

Using (18) and (1), we find the following expressions forr andr∗:

r = Tr Q =
∑

(g(Qeα, eα) − g(Qeα′ , eα′ )) = 2
∑

(g(Qeα, eα)),

r∗ = Tr(JQ) =
∑

(g(JQeα, eα) − g(JQeα′ , eα′ )) = 2
∑

(g(Qeα, Jeα)).

Moreover, using (19) and (5), we obtain for ˆr:

r̂ = Tr Q̂ = 2
∑

ĝ(Q̂êα, êα) = 2
∑

ĝ(Q̂eα, êα)

=
∑

(g(Qeα, eα) − √−1g(Qeα, Jeα)).
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From the above equalities, one can easily derive the following important formula for ˆr:

r̂ = 1
2(r − √−1r∗). (20)

For further use, we need also the following additional operators.
For X, Y ∈ X(M) and a symmetric (0, 2)-tensor fieldA onM, defineX ∧A Y to be the

operator acting on vector fields by

(X ∧A Y )Z = A(Y, Z)X − A(X, Z)Y, Z ∈ X(M).

LetA satisfy additionally the condition

A(JX, JY ) = −A(X, Y )

(note that the relation of this type is fulfilled by the metric tensorg and the Ricci tensorS;
cf. (1) and (18)).

DefineÂ to be the complex (0, 2)-tensor field which is completely determined by its
values onX(1,0)(M) and for which

Â(X̂, Ŷ ) = 1
2(A(X, Y ) − √−1A(X, JY )).

For X̂, Ŷ ∈ X(1,0)(M), define the operator̂X ∧Â Ŷ acting onX(1,0)(M) by

(X̂ ∧Â Ŷ )Ẑ = Â(Ŷ , Ẑ)X̂ − Â(X̂, Ẑ)Ŷ .

It is now a straightforward verification that

(X̂ ∧Â Ŷ )Ẑ = 1
2((X ∧A Y )Z − (JX ∧A JY )Z)̂. (21)

If additionallyÂ is a holomorphic tensor field, then (X̂ ∧Â Ŷ )Ẑ ∈ Xh(M) for anyX̂, Ŷ , Ẑ ∈
Xh(M).

4. Recurrence of the Riemann curvature

A (pseudo-)Riemannian manifold is said to be (1) locally symmetric if∇R = 0; (2) of
recurrent curvature[11,21]if its Riemann curvature tensorR is not identically zero and for
a certain 1-formψ, ∇R = ψ ⊗ R. It was shown by the author in[18] that the recurrence
of the Riemann curvature of a Kähler–Norden manifold is not essential in the sense such a
manifold is necessarily locally symmetric. On the other hand, the following notion of the
holomorphic recurrence is crucial.

A Kähler–Norden manifold will be said to be of holomorphically recurrent (in short,
H-recurrent) curvature if its holomorphic Riemann curvature tensorR̂ is not identically
zero and for a certain holomorphic 1-form̂ϕ:

∇̂R̂ = ϕ̂ ⊗ R̂. (22)
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Before we express the holomorphic recurrence with the help of the real Riemann curvature
tensorR, we extendJ to act on real 1-formsϕ assuming (Jϕ)(X) = ϕ(JX) for anyX ∈ X(M).

Remark 1. J is compatible with the musical isomorphisms. Precisely, let$ : T ∗M → TM

and% : TM → T ∗M be the isomorphisms between tangent and cotangent bundlesTM,T ∗M
defined byg(ω$, X) = ω(X) andX%(Y ) = g(X, Y ) for anyω ∈ T ∗M andX, Y ∈ TM. With
the help of (1), one easily checks thatJ is compatible with$ and%, that is, (Jω)$ = Jω$ and
(JX)% = JX%.

Theorem 2. A Kähler–Norden manifold is of H-recurrent curvature if and only if the
curvature tensor R is not identically zero and

(∇UR)(X, Y ) = ϕ(U)R(X, Y ) − ϕ(JU)JR(X, Y ) (23)

for a certain real 1-formϕ such thatϕ̂ = ϕ − √−1Jϕ is a holomorphic 1-form.

Proof. At first, we observe that for the covariant derivatives∇̂R̂ and∇R of a Kähler–Norden
manifold:

(∇̂Û R̂)(X̂, Ŷ )Ẑ = ((∇UR)(X, Y )Z)̂. (24)

To prove it, we write down the standard formula

(∇̂Û R̂)(X̂, Ŷ )Ẑ = ∇̂Û (R̂(X̂, Ŷ )Ẑ) − R̂(∇̂Û X̂, Ŷ )Ẑ − R̂(X̂, ∇̂Û Ŷ )Ẑ − R̂(X̂, Ŷ )∇̂Û Ẑ.

An application of the formulas (15) and (17) enables us to rewrite the right hand side of
the above in the form ((∇UR)(X, Y )Z)̂. Now we can start the current proof. Writing a
holomorphic 1-formϕ̂ asϕ̂ = ϕ − √−1Jϕ, with ϕ being a certain real 1-form, we see that

ϕ̂(Û) = ϕ(U) − √−1ϕ(JU). (25)

The formulas (17), (25) and (9) withf = ϕ̂(Û), W = R(X, Y )Z enable us to find the
following

ϕ̂(Û)R̂(X̂, Ŷ )Ẑ = ϕ̂(Û)(R(X, Y )Z)̂ = (ϕ(U)R(X, Y )Z − ϕ(JU)JR(X, Y )Z)̂.

Now using the above expression and (24), we claim that the defining condition (22) is
equivalent to (23). �

Examples of K̈ahler–Norden manifolds of H-recurrent curvature will be given in the last
section. They are not locally symmetric in general.

5. Ricci-recurrence

A (pseudo-)Riemannian manifold is said to be of recurrent Ricci curvature[16] if its
Ricci curvature tensorS is not identically zero and for a certain 1-formψ:

∇S = ψ ⊗ S. (26)
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Proposition 3. Any Kähler–Norden manifold of recurrent Ricci curvature is necessarily
of parallel Ricci curvature.

Proof. In the proof, we need the following formula for∇S, which is valid for any K̈ahler–
Norden manifold:

(∇JUS)(X, Y ) = (∇US)(X, JY ). (27)

In fact, using (12), we find (∇JUQ)X = J(∇UQ)X, from which the expression (27) follows.
Let the manifold be of recurrent Ricci curvature. Recall that under our assumption,

the Ricci tensorS does not vanish at any point ofM. Suppose that the set of points at
which the recurrence formψ �= 0 is not empty and restrict our consideration to this set. By
applying (26) into (27), we haveψ(JU)S(X, Y ) − ψ(U)S(X, JY ) = 0. Hence,S(X, Y )Jψ −
S(X, JY )ψ = 0. Sinceψ andJψ are linearly independent, we findS(X, Y ) = 0 for anyX, Y ,
which is a contradiction. Thereforeψ = 0 at every point ofM, that is, the Ricci tensorS is
parallel. �

Because of the reduction appeared inProposition 3, we propose to study the holomorphic
Ricci-recurrence.

A Kähler–Norden manifold will be called of H-recurrent Ricci curvature if its holomor-
phic Ricci curvature tensor̂S is not identically zero and for a certain holomorphic 1-form
ϕ̂:

∇̂Ŝ = ϕ̂ ⊗ Ŝ. (28)

Theorem 4. A Kähler–Norden manifold is of H-recurrent Ricci curvature if and only if its
Ricci curvature tensor S is not identically zero and

(∇US)(X, Y ) = ϕ(U)S(X, Y ) − ϕ(JU)S(X, JY ) (29)

for a certain real 1-formϕ such thatϕ̂ = ϕ − √−1Jϕ is a holomorphic 1-form.

Proof. For any K̈ahler–Norden manifold, we have

(∇̂Û Ŝ)(X̂, Ŷ ) = 1
2((∇US)(X, Y ) − √−1(∇US)(X, JY )). (30)

To find (30), with the help of (15) and (19), we compute

(∇̂ÛQ̂)X̂ = ∇̂ÛQ̂X̂ − Q̂∇̂ÛX̂ = ∇̂ÛQ̂X − Q̂∇̂UX

= (∇UQX̂) − (Q∇UX̂) = ((∇UQ)X)̂,

which gives (̂∇ÛQ̂)X̂ = ((∇UQ)X̂). Next we show that the last formula and (5) imply

(∇̂Û Ŝ)(X̂, Ŷ ) = ĝ((∇̂ÛQ̂)X̂, Ŷ ) = ĝ(((∇UQ)X)Ŷ , Ŷ )

= 1
2(g((∇UQ)X, Y ) − √−1g((∇UQ)X, JY )),

which leads to (30).
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Returning to the Ricci H-recurrence, we note that the defining condition (28) can be
equivalently written as

(∇̂Û Ŝ)(X̂, Ŷ ) = ϕ̂(Û)Ŝ(X̂, Ŷ ). (31)

Now, writing ϕ̂ = ϕ − √−1Jϕ and using (25) and (19), we find

ϕ̂(Û)Ŝ(X̂, Ŷ ) = 1
2(ϕ(U)S(X, Y ) − ϕ(JU)S(X, JY )

−√−1 (ϕ(U)S(X, JY ) + ϕ(JU)S(X, Y ))).

Finally, using the above and (30), we assert that (31) holds if and only if (29) is
fulfilled. �

Examples of K̈ahler–Norden manifolds of H-recurrent Ricci curvature will be given in
Section 8.

6. Holomorphically projective curvature

The holomorphically projective (in short, H-projective) curvature (real) tensorP of a
Kähler–Norden manifold of real dimensionn = 2m > 2 is defined by[23,10,18]

P(X, Y ) = R(X, Y ) − 1

n − 2
(X ∧S Y − JX ∧S JY ). (32)

The tensorP is an invariant of the holomorphically projective transformations. On the other
hand, by analogy to the classical theory of the (real) projective curvature (see e.g.[3]),
consider the standard projective curvature tensorP̂ of the connection̂∇ given by

P̂(X̂, Ŷ ) = R̂(X̂, Ŷ ) − 1

m − 1
X̂ ∧Ŝ Ŷ . (33)

By definition, P̂ is a holomorphic tensor filed. Making straightforward computations, in
which formulas (33), (17), (21) withA = S, and (32) should be used, one can check that
the tensorŝP andP are strictly related. Namely:

P̂(X̂, Ŷ )Ẑ = (P(X, Y )Z)̂ (34)

holds.
A Kähler–Norden manifold is called H-projectively flat if its Levi–Civita connection can

be locally holomorphically projectively transformed to a flat connection.

Theorem 5. Let (M, J, g) be a Kähler–Norden manifold.

(i) WhendimRM ≥ 6, the manifold is H-projectively flat if and only ifP = 0,or equiva-
lently P̂ = 0.

(ii) WhendimRM = 4, the tensor P(or equivalentlyP̂) vanishes identically. In this case,
the manifold is H-projectively flat if and only if its scalar curvature r is constant, or
equivalentlŷr is constant.
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Proof.

(i) This assertion is in fact a consequence of more general results concerning complex
manifolds endowed with affine connections (cf.[20,23,10]) and formulas (33), (34).
(ii) Since the Riemann curvature tensor of a Kähler–Norden manifold is totally pure (see
(16)), from Corollary 4.2 of Ivanov[10] it follows that P vanishes identically, and the
manifold is H-projectively flat if and only if the Ricci tensorS is Codazzi, that is:

(∇XS)(Y, Z) − (∇YS)(X, Z) = 0. (35)

In view of (30), the condition (35) is equivalent to

(∇̂X̂Ŝ)(Ŷ , Ẑ) − (∇̂Ŷ Ŝ)(X̂, Ẑ) = 0. (36)

On the other hand, since dimCM = 2, for the Ricci tensor̂S, we havêS = (r̂/2)ĝ. Therefore,
(36) holds if and only if

dr̂(X̂)ĝ(Ŷ , Ẑ) − dr̂(Ŷ )ĝ(X̂, Ẑ) = 0,

equivalently dˆr = 0, that is, ˆr is a complex constant. Finally, since ˆr is a holomorphic
function and Re(ˆr) = r/2, r̂ is constant if and only ifr is constant. �

A Kähler–Norden manifold is called to be of recurrent H-projective curvature if its tensor
P is not identically zero and for a certain 1-formψ:

∇P = ψ ⊗ P.

It was shown by the author in[18] that this notion is not essential in the sense that any Kähler–
Norden manifold of recurrent H-projective curvature is necessarily locally symmetric. So,
we examine the following.

A Kähler–Norden manifold will be called to be of H-recurrent H-projective curvature if
its tensorP̂ is not identically zero and

∇̂P̂ = ϕ̂ ⊗ P̂ (37)

for a certain holomorphic 1-form̂ϕ
The next theorem shows that the class of Kähler–Norden manifolds of H-recurrent H-

projective curvature reduces to the class of H-recurrent curvature. Precisely, we have the
following theorem.

Theorem 6. Let (M, J, g) be a Kähler–Norden manifold withdimRM ≥ 6.

(i) If (M, J, g) is of H-recurrent curvature, then it is H-projectively flat or of H-recurrent
H-projective curvature.

(ii) If (M, J, g) is of H-recurrent H-projective curvature, then it is of H-recurrent
curvature.
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Proof.

(i) Let us assume that the manifold is of H-recurrent curvature, so that (22) holds and
R̂ �= 0. We note easily that (22) always implies (28). Next differentiating (33) covariantly
and applying both of the relations, we find (37). Now, we have two possibilities:
(i1) P̂ is identically zero, i.e. the H-projective flatness (however, in this case the manifold
is locally symmetric, which is not excluded in general; cf.[18]);
(i2) P̂ �= 0 at every point and then the manifold is of H-recurrent H-projective curvature.
(ii) This part of our theorem can be proved by formal repeating certain ideas from the papers
[14,8], which concern Riemannian manifolds with recurrent projective curvature. Exactly,
assuming the condition (37) and̂P �= 0, similarly like in Theorem 3.6 of[14], it can be
shown that the recurrence form̂ϕ is closed. Next, like in[8], one shows that (22) must hold.
R̂ �= 0 sinceP̂ �= 0. �

7. Four-dimensional Kähler–Norden manifolds

Theorem 7. A Kähler–Norden manifold of real dimension 4 is of H-recurrent curvature
on the set, where the holomorphic scalar curvaturer̂ is not zero with the recurrence form
ϕ̂ given byϕ̂ = dr̂/r̂, or equivalentlyϕ̂ = ϕ − √−1Jϕ with ϕ = (1/2)d ln(r2 + r∗2).

Proof. Since dimCM = 2, we may expresŝR in the form

R̂(X̂, Ŷ ) = 1
2 r̂X̂ ∧ĝ Ŷ .

This then leads to the following expression

(∇̂Û R̂)(X̂, Ŷ ) = 1
2dr̂(Û)X̂ ∧ĝ Ŷ .

The last two equalities give (22) witĥϕ = dr̂/r̂ at points where ˆr �= 0. Using formula (20),
we find

Re(̂ϕ) = 1
2d ln(r2 + r∗2).

Therefore, we can writêϕ = ϕ − √−1Jϕ, whereϕ = (1/2)d ln(r2 + r∗2). �

Theorem 8. A Kähler–Norden manifold of real dimension 4 is (locally) conformally flat
if and only if its holomorphic scalar curvature is constant pure imaginary(r = 0 and
r∗ = constant).

Proof. Since dimCM = 2, like in the previous proof, we have

R̂(X̂, Ŷ )Ẑ = 1
2 r̂ (X̂ ∧ĝ Ŷ )Ẑ. (38)
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To transform the right hand side of (38), we will use (9) and the formula

J(X ∧g Y − JX ∧g JY ) = JX ∧g Y + X ∧g JY, (39)

which can be obtained by a straightforward computation. Namely, using (21) withA = g,
we find

1
2 r̂ (X̂ ∧ĝ Ŷ )Ẑ = 1

4 r̂ ((X ∧g Y )Z − (JX ∧g JY )Z)̂ ,

which in virtue of (9) withf = r̂, W = (X ∧g Y )Z − (JX ∧g JY )Z, and the formulas (20),
(39), can be transformed into

1
2 r̂ (X̂ ∧ĝ Ŷ )Ẑ = 1

8((r(X ∧g Y − JX ∧g JY ) − r∗(JX ∧g Y + X ∧g JY ))Z)̂. (40)

Now, regarding (38), (17) and (40), we obtain for the curvature tensor

R(X, Y ) = 1
8r(X ∧g Y − JX ∧g JY ) − 1

8r∗(JX ∧g Y + X ∧g JY ). (41)

Consequently, for the Ricci operator:

Q = ( 1
4r)I − ( 1

4r∗)J. (42)

Recall that the manifold is conformally flat if and only ifC = 0, whereC is the Weyl
conformal curvature tensor:

C(X, Y ) = R(X, Y ) − 1
2(QX ∧g Y + X ∧g QY − ( 1

3r)X ∧g Y ).

In virtue of (41) and (42), the conformal curvature tensor takes the shape

C(X, Y ) = 1
24r(X ∧g Y − 3JX ∧g JY ).

Therefore,C = 0 if and only if r = 0, as required. �

8. Examples

Letm ∈ N, m > 3, and the Greek indices run through the set{2, 3, . . . , m − 1}. Let ĝ be
the holomorphic Riemannian metric which is defined on an open subsetU of the complex
spaceCm by

ĝ = f dz1 ⊗ dz1 +
∑

kαβ dzα ⊗ dzβ + dz1 ⊗ dzm + dzm ⊗ dz1, (43)

where the sum concerns the repeated indices,f is a holomorphic function onU andkαβ

are complex constants such that the (m − 2)-by-(m − 2) matrix [kαβ] is symmetric and
non-degenerate. The metric (43) is the holomorphic version of the so-called Walker’s type
metric occurred in[21], Section 9; see also the monograph[17].

In the sequel, we specify the functionf to obtain various classes of holomorphic Rie-
mannian metrics.
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(i) Let us suppose

f (z1, . . . , zm) = p(z1)
∑

aαβzαzβ +
∑

bαzα, (44)

whereaαβ are complex constants such that the (m − 2)-by-(m − 2) matrix [aαβ] is non-
zero and symmetric,bα are arbitrary complex constants andp is a function depending
on one complex variable only, which is non-zero and holomorphic on an open subsetU1
of the complex lineC. Then on the open subsetU = U1 × Cm−1 ⊂ Cm, the metric (43)
with f given by (44) is of H-recurrent curvature witĥϕ = (p′/p)dz1 as its recurrence
form (motivated by Walker[21], Section 9).

(ii) Suppose that

f (z1, . . . , zm) = 2z2
∑

aαzα, (45)

whereaα are complex constants such that

∑
|aα|2 > 0 and

∑
kαβaαaβ = 0,

[kαβ] being the inverse matrix [kαβ]−1. Then the metric (43) withf given by (45) is of
H-recurrent Ricci curvature witĥϕ = (∑

α aαzα
)

dz1 as its recurrence form (motivated
by Olszak[15], Example 1).
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